Changes in cerebral oxygenation and blood flow during LBNP in spinal cord-injured individuals.
نویسندگان
چکیده
Spinal cord-injured (SCI) individuals, having a sympathetic nervous system lesion, experience hypotension during sitting and standing. Surprisingly, they experience few syncopal events. This suggests adaptations in cerebrovascular regulation. Therefore, changes in systemic circulation, cerebral blood flow, and oxygenation in eight SCI individuals were compared with eight able-bodied (AB) individuals. Systemic circulation was manipulated by lower body negative pressure at several levels down to -60 mmHg. At each level, we measured steady-state blood pressure, changes in cerebral blood velocity with transcranial Doppler, and cerebral oxygenation using near-infrared spectroscopy. We found that mean arterial pressure decreased significantly in SCI but not in AB individuals, in accordance with the sympathetic impairment in the SCI group. Cerebral blood flow velocity decreased during orthostatic stress in both groups, but this decrease was significantly greater in SCI individuals. Cerebral oxygenation decreased in both groups, with a tendency to a greater decrease in SCI individuals. Thus present data do not support an advantageous mechanism during orthostatic stress in the cerebrovascular regulation of SCI individuals.
منابع مشابه
Assessment of skin blood content and oxygenation in spinal cord injured subjects during reactive hyperemia.
This study was undertaken to determine whether the reactive hyperemia response following ischemia in spinal cord injured (SCI) individuals is different from that which occurs in able-bodied (AB) individuals. The reactive hyperemia response was produced by applying a pressure of 150 mmHg for 300 s, 600 s, and 900 s to the skin over the greater trochanter in 10 SCI and 10 AB subjects using a comp...
متن کاملFiber-optic Monitoring of Spinal Cord Hemodynamics in Experimental Aortic Occlusion.
BACKGROUND Spinal cord ischemia occurs frequently during thoracic aneurysm repair. Current methods based on electrophysiology techniques to detect ischemia are indirect, non-specific, and temporally slow. In this article, the authors report the testing of a spinal cord blood flow and oxygenation monitor, based on diffuse correlation and optical spectroscopies, during aortic occlusion in a sheep...
متن کاملThe role of cerebral oxygenation and regional cerebral blood flow on tolerance to central hypovolemia.
Tolerance to central hypovolemia is highly variable, and accumulating evidence suggests that protection of anterior cerebral blood flow (CBF) is not an underlying mechanism. We hypothesized that individuals with high tolerance to central hypovolemia would exhibit protection of cerebral oxygenation (ScO2), and prolonged preservation of CBF in the posterior vs. anterior cerebral circulation. Eigh...
متن کاملAngiotensin II contributes to the increased baseline leg vascular resistance in spinal cord-injured individuals.
OBJECTIVE Spinal cord-injured (SCI) individuals demonstrate an increased baseline leg vascular resistance (LVR). In addition, despite the lack of sympathetic control, an increase in LVR is observed during orthostatic challenges. On the basis of the vasoconstrictive characteristics of angiotensin II, we examined the hypothesis that angiotensin II contributes to the LVR at baseline and during hea...
متن کاملWhy does the central nervous system not regenerate after injury?
A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 91 5 شماره
صفحات -
تاریخ انتشار 2001